8: Largest Product in a Series#
The four adjacent digits in the 1000-digit number that have the greatest product are \(9\times 9\times 8\times 9\times = 5832\).
\[\begin{split}
73167176531330624919225119674426574742355349194934\\
96983520312774506326239578318016984801869478851843\\
85861560789112949495459501737958331952853208805511\\
12540698747158523863050715693290963295227443043557\\
66896648950445244523161731856403098711121722383113\\
62229893423380308135336276614282806444486645238749\\
30358907296290491560440772390713810515859307960866\\
70172427121883998797908792274921901699720888093776\\
65727333001053367881220235421809751254540594752243\\
52584907711670556013604839586446706324415722155397\\
53697817977846174064955149290862569321978468622482\\
83972241375657056057490261407972968652414535100474\\
82166370484403199890008895243450658541227588666881\\
16427171479924442928230863465674813919123162824586\\
17866458359124566529476545682848912883142607690042\\
24219022671055626321111109370544217506941658960408\\
07198403850962455444362981230987879927244284909188\\
84580156166097919133875499200524063689912560717606\\
05886116467109405077541002256983155200055935729725\\
71636269561882670428252483600823257530420752963450
\end{split}\]
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
Your Solution#
Lunch this notebook and try to create your own solution!
Tip: look for the launch button (🚀) in the top right corner!
def problem8(L, N): # L = long number, N = number of adjacent digits
# Try your solution here
return solution
# Testing:
unittest.main(argv=[''], verbosity=2,exit=False)
# Printing Project Euler Solution
# print(problem8(13))
My solution#
Spoiler Alert!!
See my solution bellow
long_digit = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450
def problem8(L, N): # L = long number, N = number of adjacent digits
long_string = str(L)
greatest = 0
M = len(long_string) - N + 1
for i in range(M):
# get a chunk of the number
short = long_string[i:i+N]
# calculate the product
product = 1
for n in short:
product *= int(n)
# keep the largest value
greatest = max(product, greatest)
return greatest
# Testing
unittest.main(argv=[''], verbosity=2,exit=False)
Add main question:
# Printing Project Euler Solution
problem8(long_digit, 13)
23514624000